UMA ABORDAGEM MULTI-ESCALA PARA O CÁLCULO DA PERMEABILIDADE LONGITUDINAL DE MEIOS POROSOS FIBROSOS RANDÔMICOS

Erico Fagundes Anicet Lisboa

TESE SUBMETIDA AO CORPO DOCENTE DA COORDENAÇÃO DOS PROGRAMAS DE PÓS-GRADUAÇÃO DE ENGENHARIA DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO COMO PARTE DOS REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE MESTRE EM CIÊNCIAS EM ENGENHARIA MECÂNICA.

Aprovada por:

Prof. Manuel Ernani de Carvalho Cruz, Ph.D.

Prof. Miguel Hiroo Hirata, Ph.D.

Prof. Gustavo Cesar Rachid Bodstein, Ph.D.

RIO DE JANEIRO, RJ - BRASIL DEZEMBRO DE 2000

LISBOA, ERICO FAGUNDES ANICET

п

Uma Abordagem Multi-Escala para o Cálculo da Permeabilidade Longitudinal de Meios Porosos Fibrosos Randômicos [Rio de Janeiro] 2000

XVIII, 132 p. 29,7 cm (COPPE/UFRJ,

M.Sc., Engenharia Mecânica, 2000)

Tese - Universidade Federal do Rio de Janeiro, COPPE

1. Escoamento em Meios Porosos Fibrosos

2. Método da Homogeneização

3. Elementos Finitos

I. COPPE/UFRJ II. Título (série)

A meus pais

A Cris

AGRADECIMENTOS

1 V

Ao professor Manuel Ernani de Carvalho Cruz que, além de orientador, mostrou-se também um excelente amigo.

Aos professores da UERJ e da COPPE pelo conhecimento adquirido; em particular a Ângela Ourívio Nieckele, por ter incentivado em mim o gosto pelo estudo de métodos numéricos e mecânica dos fluidos.

A todos os amigos do Laboratório de Transmissão e Tecnologia do Calor; em particular a Leandro Bastos Machado, Carlos Frederico Trotta Matt e Rodrigo Penha de Andrade Rocha pelo auxílio científico fornecido.

Aos amigos Aureo Pinheiro Ruffier e Fernando Chaves Dart pelo incentivo e apoio fornecidos ao longo do desenvolvimento dessa tese. Em particular a Aureo Pinheiro Ruffier pela revisão final da tese.

Ao amigo Pierre Novis Mendonça, pelas explicações sempre claras e objetivas fornecidas ao longo desta tese.

Aos amigos Lucio Guimarães Xavier, Carolina de Abreu Lisboa e Rodrigo Guterrez Berger que, com explicações imediatas, pouparam-me dias de pesquisa.

A meus pais, que tantas vezes tiveram que abrir mão de minha companhia, por me ensinarem o valor de se conquistar as coisas com esforço e dedicação.

A minha amiga Cristiane Madanêlo de Oliveira, que no decorrer desta tese se tornou também namorada e esposa. Obrigado por tudo, desde o abraço no momento de aprovação do ingresso no mestrado até o apoio, compreensão e carinho demonstrados em todas as horas, fossem elas de alegria ou de sofrimento. Resumo da Tese apresentada à COPPE/UFRJ como parte dos requisitos necessários para a obtenção do grau de Mestre em Ciências (M.Sc.).

v

UMA ABORDAGEM MULTI-ESCALA PARA O CÁLCULO DA PERMEABILIDADE LONGITUDINAL DE MEIOS POROSOS FIBROSOS RANDÔMICOS

Erico Fagundes Anicet Lisboa

Dezembro / 2000

Orientador: Manuel Ernani de Carvalho Cruz, Ph.D.

Programa: Engenharia Mecânica

Esta tese tem como objetivo determinar a permeabilidade longitudinal de meios porosos fibrosos randômicos, considerando-se o escoamento longitudinal totalmente desenvolvido ao longo de fibras paralelas. O método da homogeneização é aplicado ao problema original de múltiplas escalas separando-o em três problemas: da macroescala, da mesoescala e da microescala. A permeabilidade longitudinal do meio é determinada através da solução do problema da mesoescala, modificado com o tratamento da microescala quando necessário. Este problema é resolvido através do método dos elementos finitos, cujo sistema de equações algébricas lineares é resolvido com a utilização do método dos gradientes conjugados. O programa computacional desenvolvido é validado através da comparação com resultados obtidos para meios com geometrias regulares, e é então utilizado para a geração de novos resultados para meios *randômicos*.

Abstract of Thesis presented to COPPE/UFRJ as a partial fulfillment of the requirements for the degree of Master of Science (M.Sc.)

A MULTI-SCALE APPROACH FOR THE CALCULATION OF THE LONGITUDINAL PERMEABILITY OF RANDOM FIBROUS POROUS MEDIA

Erico Fagundes Anicet Lisboa

December / 2000

Advisor: Manuel Ernani de Carvalho Cruz, Ph.D.

Department: Mechanical Engineering

This thesis focus on the determination of the longitudinal permeability for laminar fully-developed flow through porous media containing parallel and randomly dispersed fibers. The homogenization method is applied to the multiscale original problem, which is then decoupled into the macro, meso and microscale problems. The longitudinal permeability of the porous media is determined by the solution of the mesoscale problem, modified by the microscale treatment when necessary. To solve this problem, the finite element method is applied and the resulting linear algebraic system of equations is solved by the conjugate gradient method. A computational program is developed and validated by comparing the numerical results for regular arrays of fibers to analytical results available in the literature; the program is then utilized to generate new results for the longitudinal permeability of *random* media.

ÍNDICE

1. INTRODUÇÃO	1
1.1. Motivação	1
1.2. Descrição do Problema Físico e Objetivos	3
1.3. Revisão da Literatura	4
1.4. Metodologia	8
1.5. Organização da Tese	9
2. ESCOAMENTO EM MEIOS POROSOS	11
2.1. Meios Porosos	11
2.2. Fluidos	12
2.3. Lei de Darcy	13
3. FORMULAÇÃO CONTÍNUA DO PROBLEMA	17
3.1. Problema Original de Múltiplas Escalas	17
3.2. Homogeneização	20
3.3. Aplicação da Teoria da Homogeneização ao Problema O	riginal24
3.4. Macroescala	29
3.5. Mesoescala	30
3.5.1. Nível 1	30
3.5.2. Nível 2	37
3.5.3. Nível 3	37
3.5.4. Nível 4	37
3.6. Microescala	37
3.6.1. Geometria das regiões de estreito	38
3.6.2. Limite inferior	39
3.6.3. Limite superior	41

4. MÉTODOS NUMÉRICOS	43
4.1. Geração de Domínios	43
4.2. Geração de Malhas	44
4.3. Discretização por Elementos Finitos	57
4.4. Solução Iterativa pelo Método dos Gradientes Conjugados	6
4.4.1. Método da Máxima Descida	61
4.4.2. Gradientes Conjugados	64
5. RESULTADOS E ANÁLISE	67
5.1. Validação para Células Ordenadas	67
5.1.1. Happel	68
5.1.2. Sparrow & Loeffler	69
5.1.3. Drummond & Tahir	72
5.1.4. Análise dos Parâmetros Numéricos	73
5.1.4. Comparações entre os Métodos Apresentados	8.
5.2. Meios Randômicos	87
5.2.1. Análise dos Parâmetros Numéricos	88
5.2.2. Resultados Obtidos	95
6. CONCLUSÕES E SUGESTÕES	112
6.1. Conclusões	112
6.2. Sugestões	114
ANEXO A. ARQUIVOS DE DADOS	115
A.1. Arquivo INFO.PRE	11
A.2. Arquivo INFO.REA	119
ANEXO B. ESQUEMA ELEMENTO-A-ELEMENTO PARA A MON	NTAGEM DA
MATRIZ DE RIGIDEZ	122
VALORES NUMÉRICOS DE PERMEABILIDADE	125
RIBLIOGRAFIA	129

ÍNDICE DE FIGURAS

Figura 1.1 - Exemplos de tipos de arranjos regulares.	_ 7
Figura 2.1 - Esquema do experimento de filtragem de Darcy	14
Figura 3.1 - Exemplo de um meio poroso fibroso	17
Figura 3.2 - Geometria de uma célula periódica.	31
Figura 3.3 - Geometria das regiões de estreito para (a) limite inferior, (b) lir	nite
superior	39
Figura 3.4 - Escoamentos para a demonstração da propriedade do limite inferior.	40
Figura 3.5 - Escoamentos para a demonstração da propriedade do limite superior.	42
Figura 4.1 - Célula Voronoi com 5 lajotas, replicada nas duas direções	45
Figura 4.2 - Distâncias $d_H(\mathbf{y}_f)$ para um ponto na fronteira reta e para um ponto	na
fronteira curva.	46
Figura 4.3 - Lajota com apenas uma região de estreito, de limite inferior.	48
Figura 4.4 - Lajota com mais de uma região de estreito, de limite inferior.	48
Figura 4.5 - Lajota contendo região de estreito, de limite superior	49
Figura 4.6 - Malha em célula contendo 5 lajotas, sem eliminação de regiões de estre	eito,
1906 vértices, 2994 triângulos	50
Figura 4.7 - Malha em célula contendo 5 lajotas, com eliminação de regiões de estr	eito
através da união das fibras, 1478 vértices, 2371 triângulos.	51
Figura 4.8 - Malha em célula contendo 5 lajotas, com eliminação de regiões de estr	eito
através do corte das fibras, 1668 vértices, 2655 triângulos.	51
Figura 4.9 - Malha em célula contendo 32 lajotas, sem eliminação de regiões de estre	eito,
11381 vértices, 18600 triângulos	52
Figura 4.10 - Malha em célula contendo 32 lajotas, com eliminação de regiões	de
estreito através da união das fibras, 10574 vértices, 17437 triângulos.	53
Figura 4.11 - Malha em célula contendo 32 lajotas, com eliminação de regiões	de
estreito através do corte das fibras, 10952 vértices, 18001 triângulos.	54

Figura 4.12 - Malha em célula contendo 32 lajotas, com a necessária elimin	ação
de regiões de estreito através da união das fibras, 10243 vértices, 1	5820
triângulos	_ 55
Figura 4.13 - Malha em célula contendo 32 lajotas, com a necessária elimin	ação
de regiões de estreito através do corte das fibras, 11935 vértices, 12	8337
triângulos	_ 56
Figura 4.14 - Função de interpolação f_{j} .	_ 58
Figura 4.15 - Esquema de domínio periódico discretizado: 32 elementos, 25 nós glo	obais
e 16 graus de liberdade.	_ 58
Figura 4.16 - Campo de velocidades em uma célula periódica.	_ 66
Figura 5.1 - Exemplos de tipos de arranjos.	_ 67
Figura 5.2 - Modelo de Happel para o arranjo quadrado	_ 68
Figura 5.3 - Diagrama do arranjo quadrado.	_ 71
Figura 5.4 - Diagrama do arranjo triangular.	_ 71
Figura 5.5 - Células unitárias utilizadas para arranjos regulares.	_ 74
Figura 5.6 - Malhas para as células dos arranjos quadrdo e triangular, sem eliminaçã	io de
regiões de estreito.	_ 74
Figura 5.7 - Malhas para as células dos arranjos quadrdo e triangular, com elimin	ação
de regiões de estreito através da união das fibras.	_ 74
Figura 5.8 - Malhas para as células dos arranjos quadrdo e triangular, com elimin	ação
de regiões de estreito através do corte das fibras	_ 75
Figura 5.9 - Erro absoluto de discretização em função do refino da malha para o ar	ranjo
quadrado, $h_0^* = 0,2, n_r$ variando de 0,5 a 5,0, $c \in \{0,1; 0,3; 0,5; 0,77\}$.	_ 79
Figura 5.10 - Erro absoluto de discretização em função do refino da malha pa	ıra o
arranjo quadrado, $h_0^* = 0,08$, n_r variando de 0,5 a 5,0, $c \in \{0,1; 0,3; 0,5; 0,77\}$.	. 79
Figura 5.11 - Erro absoluto de discretização em função do refino da malha pa	ıra o
arranjo triangular, $h_0^* = 0,2, n_r$ variando de 0,5 a 5,0, $c \in \{0,1; 0,3; 0,6; 0,9\}$.	_ 80
Figura 5.12 - Erro absoluto de discretização em função do refino da malha pa	ıra o
arranjo triangular, $h_0^* = 0,08$, n_r variando de 0,5 a 5,0, $c \in \{0,1; 0,3; 0,6; 0,9\}$.	_ 80
Figura 5.13 - Comparação dos valores obtidos para a permeabilidade longitudina	ıl do
arranjo quadrado como função da concentração.	_ 85

Λ

Figura 5.14 - Comparação dos valores obtidos para a permeabilidade longitudinal do
arranjo triangular como função da concentração 86
Figura 5.15 - Permeabilidade em função do nível de refino da malha em arranjos
randômicos, 16 cilindros, $c = 0, 1, t = 10^{-8}$ 91
Figura 5.16 - Permeabilidade em função do nível de refino da malha em arranjos
randômicos, 24 cilindros, $c = 0, 1, t = 10^{-8}$ 92
Figura 5.17 - Permeabilidade em função do nível de refino da malha em arranjos
randômicos, 32 cilindros, $c = 0, 1, t = 10^{-8}$ 92
Figura 5.18 - Histograma das permeabilidades encontradas para a concentração
de 0,05 96
Figura 5.19 - Histograma das permeabilidades encontradas para a concentração
de 0,10 96
Figura 5.20 - Histograma das permeabilidades encontradas para a concentração
de 0,15 97
Figura 5.21 - Histograma das permeabilidades encontradas para a concentração
de 0,20 97
Figura 5.22 - Histograma das permeabilidades encontradas para a concentração
de 0,25 98
Figura 5.23 - Histograma das permeabilidades encontradas para a concentração
de 0,30 98
Figura 5.24 - Histograma das permeabilidades encontradas para a concentração
de 0,35 99
Figura 5.25 - Histograma das permeabilidades encontradas para a concentração
de 0,40 99
Figura 5.26 - Histograma das permeabilidades encontradas para a concentração
de 0,45 100
Figura 5.27 - Histograma das permeabilidades encontradas para a concentração
de 0,50 100
Figura 5.28 - Médias das permeabilidades para 100 arranjos, para diversas
concentrações, em função do número de cilindros 102
Figura 5.29 - Médias das permeabilidades para 100 arranjos, para diversas
concentrações, em função do comprimento característico da célula 103

Figura 5.30 - Desvios padrões das amostras contendo 100 arranjos, para diversas
concentrações, em função do comprimento característico da célula 104
Figura 5.31 - Permeabilidade longitudinal média em função da concentração 107
Figura 5.32 - Diferença relativa entre a permeabilidade randômica e a permeabilidade
do arranjo quadrado, em função da concentração 108
Figura 5.33 - Diferença relativa entre a permeabilidade randômica e a permeabilidade
do arranjo triangular, em função da concentração 108
Figura 5.34 - Comparação dos valores calculados com os resultados obtidos

experimentalmente por SULLIVAN (1942). _____ 110

ÍNDICE DE TABELAS

Tabela 5.1 - Valores de permeabilidade em função da tolerância t para arranjos
regulares, <i>c</i> = 0,5 76
Tabela 5.2 - Variação do erro de discretização em função do nível de refino
da malha para o arranjo quadrado, $h_0^* = 0,2$, n_r variando de 0,5 a 5,0,
$c \in \{0,1; 0,3; 0,5; 0,77\}.$ 77
Tabela 5.3 - Variação do erro de discretização em função do nível de refino
da malha para o arranjo quadrado, $h_0^* = 0,08$, n_r variando de 0,5 a 5,0,
$c \in \{0,1; 0,3; 0,5; 0,77\}.$ 77
Tabela 5.4 - Variação do erro de discretização em função do nível de refino
da malha para o arranjo triangular, $h_0^* = 0,2$, n_r variando de 0,5 a 5,0,
$c \in \{0,1; 0,3; 0,6; 0,9\}.$ 78
Tabela 5.5 - Variação do erro de discretização em função do nível de refino
da malha para o arranjo triangular, $h_0^* = 0,08$, n_r variando de 0,5 a 5,0,
$c \in \{0,1; 0,3; 0,6; 0,9\}.$ 78
Tabela 5.6 - Comparação dos valores de permeabilidade obtidos para o arranjo
quadrado, $h_0^* = 0,08, n_r = 3,0, t = 10^{-6}$. 82
Tabela 5.7 - Comparação dos valores de permeabilidade obtidos para o arranjo
triangular, $h_0^* = 0,08, n_r = 5,0, t = 10^{-6}$. 82
Tabela 5.8 - Limites para a permeabilidade longitudinal obtidos para arranjo
quadrado, $h_0^* = 0,08$, $n_r = 3,0$, $t = 10^{-6}$, $a_c^* = 0,20$, $b^* \in \{0,23; 0,19; 0,16\}$,
$c \in \{0,75; 0,77\}.$ 83
Tabela 5.9 - Limites para a permeabilidade longitudinal obtidos para arranjo
triangular, $h_0^* = 0,08$, $n_r = 5,0$, $t = 10^{-6}$, $a_c^* = 0,20$, $b^* \in \{0,23; 0,19; 0,15\}$,
$c \in \{0,85; 0,90\}.$ 83
Tabela 5.10 - Limites para a permeabilidade longitudinal obtidos para arranjo
quadrado, $h_0^* = 0,08$, $n_r = 3,0$, $t = 10^{-6}$, $a_c^* = 0,20$, $b^* \in \{0,23; 0,19; 0,16\}$,

 $c \in \{0,785; p/4\}.$ 84

лш

Tabela 5.11 - Limites para a permeabilidade longitudinal obtidos para arranjo
triangular, $h_0^* = 0,08$, $n_r = 5,0$, $t = 10^{-6}$, $a_c^* = 0,20$, $b^* \in \{0,15; 0,12\}$,
$c \in \{0,905; p\sqrt{3}/6\}.$ 84
Tabela 5.12 - Permeabilidade e tempo de processamento em função da tolerância t em
arranjos randômicos, 4 cilindros, $h_0^* = 0,08$, $n_r = 2,0$ 88
Tabela 5.13 - Permeabilidade e tempo de processamento em função da tolerância t em
arranjos randômicos, 16 cilindros, $h_0^* = 0,08$, $n_r = 2,0$ 89
Tabela 5.14 - Permeabilidade e tempo de processamento em função da tolerância t em
arranjos randômicos, 32 cilindros, $h_0^* = 0,08, n_r = 2,0.$ 89
Tabela 5.15 - Permeabilidade e tempo de processamento em função de n_r e h_0^* para
meios randômicos, 16 cilindros, $c = 0, 1, t = 10^{-8}$ 90
Tabela 5.16 - Permeabilidade e tempo de processamento em função de n_r e h_o^* para
meios randômicos, 24 cilindros, $c = 0, 1, t = 10^{-8}$. 90
Tabela 5.17 - Permeabilidade e tempo de processamento em função de n_r e h_0^* para
meios randômicos, 32 cilindros, $c = 0.1$, $t = 10^{-8}$ 91
Tabela 5.18 - Valores da permeabilidade e limites associados em função de \boldsymbol{b}^* em
5 arranjos distintos, $c = 0, 1, h_o^* = 0,08, n_r = 2,0, t = 5 \times 10^{-5}, a_c^* = 0,08.$ 94
Tabela 5.19 - Valores da permeabilidade e limites associados em função de \boldsymbol{b}^* em
5 arranjos distintos, $c = 0,3$, $h_o^* = 0,08$, $n_r = 2,0$, $t = 5 \times 10^{-5}$, $a_c^* = 0,08$. 94
Tabela 5.20 - Valores da permeabilidade e limites associados em função de \boldsymbol{b}^* em
5 arranjos distintos, $c = 0.5$, $h_o^* = 0.08$, $n_r = 2.0$, $t = 5 \times 10^{-5}$, $a_c^* = 0.08$. 94
Tabela 5.21- Faixas de permeabilidade para os resultados das Figuras 5.18 a 5.27. 101
Tabela 5.22 - Médias e desvios padrões dos resultados de todas as células. 105
Tabela 5.23 - Médias e desvios padrões dos resultados a partir de 16 cilindros por
célula 106
Tabela 5.24 - Médias e desvios padrões dos resultados de 48 cilindros por célula. 106
Tabela 5.25 - Valores de permeabilidade obtidos experimentalmente por SULLIVAN
(1942) em função da concentração 109
Tabela C.1 - Médias das permeabilidades para 100 arranjos para $c = 0,05$, em função do
número de cilindros e do comprimento característico da célula periódica 125
Tabela C.2 - Médias das permeabilidades para 100 arranjos para $c = 0,10$, em função do
número de cilindros e do comprimento característico da célula periódica 126

- Tabela C.3 Médias das permeabilidades para 100 arranjos para c = 0,15, em função do número de cilindros e do comprimento característico da célula periódica. _____ 126
- Tabela C.4 Médias das permeabilidades para 100 arranjos para c = 0,20, em função do número de cilindros e do comprimento característico da célula periódica. _____ 126
- Tabela C.5 Médias das permeabilidades para 100 arranjos para c = 0,25, em função do número de cilindros e do comprimento característico da célula periódica. ____ 127
- Tabela C.6 Médias das permeabilidades para 100 arranjos para c = 0,30, em função do número de cilindros e do comprimento característico da célula periódica. _____ 127
- Tabela C.7 Médias das permeabilidades para 100 arranjos para c = 0,35, em função do número de cilindros e do comprimento característico da célula periódica. _____ 127
- Tabela C.8 Médias das permeabilidades para 100 arranjos para c = 0,40, em função do número de cilindros e do comprimento característico da célula periódica. ____ 128
- Tabela C.9 Médias das permeabilidades para 100 arranjos para c = 0,45, em função do número de cilindros e do comprimento característico da célula periódica. 128

Tabela C.10 - Médias das permeabilidades para 100 arranjos para c = 0,50, em função do número de cilindros e do comprimento característico da célula periódica. 128

LISTA DE SÍMBOLOS

a, b	Tamanho do passo a cada iteração no método de solução iterativa
Α	Área da seção transversal do filtro
A^{e}	Operador diferencial parcial do PVC-1
A^H	Operador diferencial parcial do PVC-2
A^c	Operador diferencial parcial do PVC-3
С	Concentração do meio poroso (fração de volume das fibras)
С	Domínio da célula periódica modificado pela eliminação de regiões de
	estreito
\boldsymbol{D}_n	Domínio da <i>n</i> -ésima região de estreito da célula periódica
d	Diâmetro das fibras
d_H	Distância entre o nó de uma fronteira (reta ou curva) e o ponto mais
	próximo na outra fronteira (curva ou reta)
e	Vetor de erro do método de solução iterativa
E_a	Erro absoluto
E_r	Erro relativo
g	Aceleração da gravidade
h	Altura
h_o	Espaçamento preestabelecido da malha
h_r	Espaçamento entre dois nós consecutivos do contorno
${H}^1_{\scriptscriptstyle\#}$	Espaço de funções duplamente periódicas em l que podem ser
	quadrado-integradas no domínio, assim como suas derivadas
Ι	Funcional auxiliar
J	Funcional auxiliar
K	Matriz de rigidez
<i>K</i> , <i>K</i> '	Constantes de proporcionalidade
L	Comprimento da macroescala
т	Número mínimo de elementos entre o cilindro e qualquer aresta
n	Vetor unitário perpendicular à área de ação

n_r	Nível de refino da malha
N_{gl}	Número de graus de liberdade
Ν	Número de fibras existentes na célula periódica
N_n	Número de regiões de estreito na célula periódica
р	Pressão
р	Vetor de força
Q	Vazão volumétrica
r	Coordenada cilíndrica na direção radial
r	Vetor de resíduo do método de solução iterativa
S	Superfície que contorna o domínio considerado
S	Variância
S ²	Desvio padrão
t	Direção do próximo passo no método de solução iterativa
u	Vetor de velocidades do fluido
U	Velocidade característica, utilizada para normalização da velocidade
X	Vetor de dimensões da macroescala
X	Espaço de funções que se anulam nos limites do domínio da
	macroescala
У	Vetor de dimensões da mesoescala, ou da célula periódica
Y	Espaço de funções que se anulam nos limites do domínio da
	mesoescala
$\{\mathbf{Y}\}$	Configuração de fibras na célula periódica

Letras Gregas

а	Distância entre duas fibras
\mathbf{a}_{c}	Distância mínima entre duas fibras a partir da qual se caracteriza uma
	região de estreio
b	Metade da largura da região de estreito
e	Relação entre as escalas de comprimento da meso e da macroescalas
$oldsymbol{f}_j$	Funções de interpolação, características do método dos elementos
	finitos
G	Contorno externo do domínio do problema de múltiplas escalas

k	Permeabilidade de Darcy
1	Comprimento da mesoescala
m	Viscosidade dinâmica
q	Coordenada cilíndrica na direção angular
r	Massa específica do fluido
t	Tolerância de convergência de métodos iterativos
Ω	Domínio da fase contínua
$\Omega 6$	Contorno do domínio da fase contínua
Ψ	Parcela da velocidade do problema original de múltiplas escalas que
	atua na mesoescala

Símbolos Matemáticos

Δ	Variação da grandeza
∇	Gradiente

Subescritos e Sobreescritos

*	Grandeza normalizada
DT	Do artigo de DRUMMOND & TAHIR (1984)
Нар	Do artigo de HAPPEL (1959)
<i>(i)</i>	<i>i</i> -ésima iteração
i, j, k, l	Índices referentes às direções ortogonais dos vetores e matrizes
jus	A jusante
LI	Limite inferior
LS	Limite superior
та	Macroescala
me	Mesoescala
mon	A montante
orig	Problema original de múltiplas escalas
SL	Do artigo de SPARROW & LOEFFLER (1959)
#	Periodicidade